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SUMMARY

Plotless density estimators (PDEs) can be efficient alternatives to quadrat sampling for estimating the density of
stationary objects. Variable area transect (VAT) sampling had been identified, and optimized relative to effort, in
previous Monte Carlo simulated population studies as a low-labor field method that demonstrated superior
estimation properties among many PDEs considered. However, natural populations tend to be much more
complex and less predictable in spatial distribution than computer generated populations. Therefore, we carried
out a Monte Carlo simulation study that used 17 fully enumerated field populations rather than simulated
populations. These natural populations represented a variety of population densities and spatial patterns. We
focused on assessing the effect of the number of population members searched for along each transect (r), sample
size, and transect width on estimation quality. Using relative root mean-squared error and relative bias as criteria,
the optimal range for r was 5 to 7 population members encountered from each start point. Sample size was best if
n> 20, but returns in estimation quality diminished by n¼ 40. Transect width was previously uninvestigated and
found to be the most important design factor affecting estimation quality. Field studies should strive for transects
as wide as logistically reasonable. Published in 2005 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The estimation of density of such stationary objects as plant communities, points of crop damage, bird

nests, or animal burrows is essential to many areas of ecology. The ideal density sampling method

would produce an unbiased estimate, be robust to different population spatial patterns and densities,

and be easily applied in various field situations. Sampling with randomly placed quadrats and

thoroughly searching for every population member in each quadrat produces unbiased density

estimates and is robust over population spatial patterns (given an appropriate quadrat size) (e.g.

Engeman et al., 1994; Krebs, 1999) However, it can be labor intensive and difficult to apply in some
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field situations. Cottom (1947) introduced distance sampling as a method for more easily obtaining

density estimates, and many distance methods, or plotless density estimators (PDEs), have since been

developed. Besides offering more labor-efficient alternatives to quadrat sampling, PDEs often can be

characterized as ‘low impact’, especially important when studying species listed as ‘at risk’ under the

Endangered Species Act.

Variable area transect (VAT) sampling and estimation (Parker, 1979) was identified in a large

simulation study as one of the most promising PDEs, based on estimation quality and in-field

practicality (Engeman et al., 1994). The VAT estimator can be considered a combination of distance

and quadrat methods. At each of n randomly located starting points, a fixed-width (strip) transect is

searched until the rth individual is encountered in the strip. Thus, the search for population members

and the measurement of distances to them are accomplished simultaneously, making this an attractive

method to apply in the field. A Monte Carlo simulation using computer-simulated populations found

superior estimation properties for r> 3, but diminishing returns, relative to field effort for r> 6

(Engeman and Sugihara, 1998).

The results from simulated populations were highly informative, but natural populations are more

complex, occurring as mixtures of spatial patterns at varying levels of intensity and grain (intensity is

the variability in pattern from place to place and grain expresses the amount of spacing between them

[Pielou, 1959]). Statistical performance information derived from simulated populations obtains

greater value if verified using naturally occurring populations. The most practical approach for

achieving this is to fully enumerate a variety of field populations and repeatedly sample them in Monte

Carlo simulations to calculate density estimates and their properties. We took this approach to further

evaluate optimization of VAT sampling.

2. METHODS

2.1. Variable area transect estimation

If we let w be the width of the strip transect and Li be the length searched from the ith random starting

point to the rth individual, then the formula for the VAT estimator is

D̂D ¼ ðnr � 1Þ
.h

w
X

Li

i

2.2. Simulation study design

Seventeen naturally occurring populations (Table 1) covering a wide range of densities and spatial

patterns each had every population member located and their X-Y Cartesian co-ordinates recorded as a

data set. The data sets were used in a series of Monte Carlo simulations that examined the effect of

sample size (n), the number of population members for which to search along each VAT (r), and the

width of the VAT (w). The unit of density of the enumerated populations is unimportant for conceptual

purposes as long as the metric for the sampling distances, Li, is squared to form the density metric.

Thus, natural population densities are reported as objects/distance-unit2 (noted as objects/u2).

Densities ranged from 0.56/u2 (grasstree distribution) to 1985.02/u2 (pocket gopher burrows). Pielou’s

(1959) index of non-randomness, �, was used to describe the direction and degree to which population

spatial distribution departs from complete randomness (Table 1), where �< 1 for regular or uniform
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patterns, and �> 1 for clustered populations. Spatial patterns of the populations ranged from regular

(�¼ 0.75) to highly clustered (�¼ 57.84), with a variety of values in between, including random

(�¼ 1).

The number of start points (sample size, n) considered for simulation purposes was 20 or 40,

because with more ideal, computer-generated populations, n< 20 produced inadequate results, with

diminishing improvements for increasing sample size from 20 to 40 (Engeman and Sugihara, 1998).

The uniform random number generator, UNIF routine (Bratley et al., 1983), was used to locate random

starting points for VAT sampling. Four VAT widths were considered: 10, 20, 30, and 40 distance-units.

At each random sampling point, the strip transect was extended and searched until 8 population

members were encountered, enabling VAT density estimates to be calculated using r¼ 3, 4, 5, 6, 7, and

8. A single simulation run was defined by the combination of sample size, transect width, and

population used. The sampling and estimation was repeated 5000 times (5000 iterations) within each

run of the simulation program. Each such run of 5000 iterations was repeated to provide two replicates

of each simulation scenario.

The observed statistics accumulated over the 5000 replications for each r included the mean density

estimate, variance, relative bias, mean squared error (MSE), and the relative root mean squared error

(RRMSE). RRMSE was calculated as

RRMSE ¼
nhX

ðD̂D� DÞ2=D2
i.

I
o1=2

where D̂D was the estimated density, D was the true density, and I¼ 5000 was the number of

replications in the simulation run. RRMSE was the primary criterion for comparing performance

among estimates (see, for example, Patil et al., 1979; Engeman et al., 1994; Engeman and Sugihara,

Table 1. Fully enumerated field populations used in variable area transect sampling simulations. A short name
for each data set is given along with a brief description of their origins, its density, and Pielou’s (1959) index of

non-randomness as a descriptor of their spatial pattern

Population name Description Density (objects/u2) Pielou’s index

Bee-eater Bee-eater cliffside nests, Africa 581.75 0.75
Koala tree Trees used by radioed koalas, Queensland 10.49 57.84
Pocket gopher1 Pocket gopher burrows, Washington state 1985.03 0.96
Pocket gopher2 Pocket gopher burrows, Washington state 1867.45 1.01
Rice3 Rat damage in rice study field 3, Philippines 2.17 5.29
Rice4 Rat damage in rice study field 4, Philippines 1.45 1.71
Rice5 Rat damage in rice study field 5, Philippines 8.41 6.94
Rice6 Rat damage in rice study field 6, Philippines 1.74 4.03
Rice7 Rat damage in rice study field 7, Philippines 1.63 1.65
Sugar1 Rat damage in sugarcane field 1, Hawaii 4.35 1.63
Sugar2 Rat damage in sugarcane field 2, Hawaii 14.49 2.88
Sugar3 Rat damage in sugarcane field 3, Hawaii 3.57 2.33
Venus Craters on planet surface, Venus 355.76 1.19
Waterfowl Waterfowl nests, Alaska 3.18 7.63
Xanthorhea1 Grass tree plot 1, Bribie Island, Queensland 0.6 1.49
Xanthorhea2 Grass tree plot 2, Bribie Island, Queensland 0.56 1.49
Xanthorhea3 Grass tree plot 3, Bribie Island, Queensland 1.06 1.19
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1998; Nielson et al., 2004), because it encompasses variance and bias, and is unitless. Also evaluated

was the relative bias (RBIAS)—the mean observed bias divided by the true parameter value. The

statistics presented from these simulations were calculated as ‘relative’ statistics (divided by the true

density of the field population used in the simulation) to standardize the scale across the densities for

each of the populations. An ideal estimator is one that is robust across many spatial patterns, i.e.

RRMSE and RBIAS are low, and where the amount of fieldwork required can be minimized or at least

be undertaken efficiently. To better understand how each of the design factors and their combinations

influenced RRMSE and RBIAS, we evaluated the simulation results using a four-factor ANOVA that

included all of the three investigator-controlled factors r, n, w, and field population as the final factor.

3. RESULTS

There were 48 combinations of the levels of three factors (r¼ 3, 4 . . . 8; n¼ 20, 40; w¼ 10, 20, 30,

40). The mean RRMSE and RBIAS result for each level of each factor averaged over all simulation

runs provided an overview of each factor’s impacts on estimation (Table 2). The number of population

members (r) for which to search that minimized RRMSE and RBIAS was r¼ 7, although there were

diminishing returns beyond r¼ 5 (Table 2). These results are similar to those for computer-generated

populations, where r was optimal at r¼ 5 or 6 (Engeman and Sugihara, 1998), but our application to

natural populations indicated that r¼ 7 should also be considered. Doubling the sample size from 20 to

40 improved estimation (Table 2), but as was found for computer-generated populations, adequate

estimation may be obtained for n< 40. The magnitude of improvement in RRMSE and RBIAS

between n¼ 20 and n¼ 40 remained virtually constant across all r. The present results indicate that

transect width can have a large impact on RRMSE and RBIAS (Table 2), with estimation typically

improving as transect width increased.

When considering which factors had the greatest impacts on RRMSE and RBIAS results, the factor

in the ANOVA with the largest mean squared error (MSE) by far was transect width, w, followed by

field population and its interaction with w (Table 3). The factors controllable by the investigator did not

appear to interact with each other. Increasing transect width had the least impact on estimation quality

Table 2. Summary of the mean relative root mean-squared error (RRMSE) and mean
relative bias (RBIAS) results for each of the investigator-controlled design factors for
variable area transect sampling obtained from a four-factor factorial analysis of variance

on Monte Carlo simulation results using 17 fully enumerated field populations

Simulation factor Level RRMSE RBIAS

r 3 0.45 0.29
4 0.42 0.29
5 0.39 0.28
6 0.38 0.27
7 0.36 0.25
8 0.37 0.27

Sample size 20 0.41 0.28
40 0.38 0.27

Strip transect width 10 0.91 0.87
20 0.31 0.22
30 0.20 0.05
40 0.17 �0.04
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for populations with random or nearly random spatial patterns. Clustered populations usually showed

improved estimation with increases in transect width, although for mild clustering the bulk of the

improvement occurred by going from w¼ 10 to w¼ 20.

4. DISCUSSION

This study provides investigators further, reality- based guidelines for VAT sampling. It offers a

tangible comparison of how optimization of VAT sampling on naturally existing populations relates to

computer-generated theoretical populations. We found that the number of population members for

which to search from each start point should be at least r¼ 5. However, in contrast to computer-

generated populations (Engeman and Sugihara, 1998), the results on natural populations suggest that if

it is logistically feasible, r¼ 7 might offer the best tradeoff between estimation quality and effort.

While we do not consider the improvement from n¼ 20 to n¼ 40 to be substantial, experimental

resources probably should dictate the sample size, as long as n� 20. Of all factors studied, transect

width, which had not been previously examined using computer-generated populations, had the

greatest impact on estimation quality. Estimation typically improved as transect width increased. This

effect also has been observed empirically in an experiment on damage sampling in row crops

(Engeman and Sterner, 2002). Nevertheless, there are logistical limits to the transect width for any

sampling situation whereby observations can be effectively and accurately made. We recommend that

the transect be as wide as can be readily accommodated in a single pass. For example, airplane surveys

Table 3. Mean-squared error (MSE) results from four-factor factorial analyses of
variance on relative root mean-squared error (RRMSE) and mean relative bias (RBIAS)
outputs from Monte Carlo simulations on variable area transect sampling using 17 fully
enumerated field populations. The factors in the analysis included three investigator-
controlled factors: the number of population members (r) for which to search from each
start point, the sample size of start points (n), and the transect width (w). The final factor

was the dataset representing each of the fully enumerated populations (dset)

Mean squared error

Source df RRMSE RBIAS

r 5 0.3475 0.0536
n 1 0.3561 0.0192
w 3 49.5128 70.1421
dset 16 6.1063 9.7170
r*n 5 0.0005 <0.0001
r*w 15 0.4937 0.0795
r*dset 80 0.0122 0.0320
n*w 3 0.0042 0.0032
n*dset 16 0.0029 0.0027
w*dset 48 2.8603 2.4193
r*n*w 15 <0.0001 <0.0001
r*n*dset 80 <0.0001 <0.0001
r*w*dset 240 0.0071 0.0042
n*w*dset 48 0.0329 0.0034
r*n*w*dset 240 <0.0001 <0.0001
Replicate 816 0.0006 0.0006
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might be flown as high as possible without losing the ability to spot every population member in the

transect path.

The data sets used in the simulations were from a variety of natural situations and characterized by

a spectrum of patterns and densities. How well our particular data sets represent all possible

populations is impossible to discern, but the results obtained from repeatedly sampling these

populations provide general insights into VAT sampling beyond what we can learn from computer-

generated populations. We provide our view for optimizing the tradeoff between in-field labor and the

design factors minimizing RRMSE and RBIAS. We do not suggest exact values for r, w, and n, but

ranges in which the investigator is most likely to achieve acceptable estimation properties, and which

overlap with experimental resources and logistics.
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